

AL REPORT

DTIC FILE COPY

AD-A219 587

A Laboratory Comparison of Field Techniques for Measurement of the Liquid Water Fraction of Snow

Harold S. Boyne and David J. Fisk

February 1990

DISTRIBUTION STATEMENT A

Approved in public release

Special Report 90-3

A Laboratory Comparison of Field Techniques for Measurement of the Liquid Water Fraction of Snow

Harold S. Boyne and David J. Fisk

February 1990

Accessor Full	
Mris data	V
1940 G.S.	
Fig. 31.	
And the state of	
51¥	
16 1 60 ***	,
1.4	
F	
1	
A -1	· 1
ガー	1

Prepared for OFFICE OF THE CHIEF OF ENGINEERS

Approved for public release; distribution is unlimited.

PREFACE

This report was prepared by Dr. Harold S. Boyne, Chief, and David J. Fisk, Physical Sciences Technician, both of the Geophysical Sciences Branch, Research Division, U.S. Army Cold Regions Research and Engineering Laboratory. Funding was provided under DA Project 4A762730AT42, Design, Construction and Operations Technology for Cold Regions; Task FS, Fire Support; Work Unit 012, Influence of State-of-the-Art Screeners on a Snow Cover.

Technical review for this report was provided by Dr. Samuel Colbeck and Mary Remley Albert, both of CRREL.

The contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an official endorsement or approval of the use of such commercial products.

A Laboratory Comparison of Field Techniques for Measurement of the Liquid Water Fraction of Snow

HAROLD S. BOYNE AND DAVID J. FISK

INTRODUCTION

Knowledge of the liquid water content of a snow cover is important in assessing the snow's mechanical strength, and rates of meltwater generation and transmission. It also has a profound effect on the performance of passive and active remote sensing systems operating over snow.

New absolute liquid water measurement methods—alcohol calorimetry (Fisk 1986) and dilution (Davis et al. 1985)—have been developed that compare favorably with freezing calorimetry (Jones et al. 1983). Another development is a capacitance sensor, which offers rapid measurement of liquid water at the surface and with depth, but requires calibration against an absolute method (Ambach and Denoth 1980). Which method one uses depends on factors such as desired sample size, available equipment, experimental design and desired accuracy. Our purpose was to test measurement equivalence and accuracy by comparing the three absolute measurement methods and by comparing the capacitance method with one of the absolute methods. The work was done in a laboratory coldroom where the snow homogeneity and wetness could be controlled.

DESCRIPTION OF EXPERIMENTS

Snow samples were prepared in a $0.5 - \times 0.5 - \times 0.75$ -m insulated box that had drainage holes drilled into the bottom, and one side that could be removed in sections for access to the snow. With the coldroom at -5 to -10° C, snow was sifted into the box and covered. The coldroom was then warmed to about 3°C and the snow allowed to come to 0°C throughout its volume, determined by inserting calibrated thermometers. After water $-\frac{1}{25}$ in to drain from the box, one snow sample was taken for each pair of measurements, mixed the issure uniformity, and divided between the two measurement procedures.

In all of the measurements, the alcohol calorimeter method was used as the transfer standard. That is, alcohol calorimetry was compared to the dilution method; alcohol calorimetry was compared to freezing calorimetry; and alcohol calorimetry was compared to the capacitance method. Each of the measurement techniques is described in detail elsewhere (Jones et al. 1983, Davis et al. 1985, Fisk 1986), so we describe them only briefly.

Alcohol calorimetry

The alcohol calorimeter uses 25 g of snow and 80 g of methanol. Separate ice water baths maintain the calorimeter reaction cup and preweighed methanol at 0° C. The snow sample is placed in the calorimeter, then the methanol is poured in. Figure 1 is a plot of temperature versus time for the snow-methanol mixture, showing the decrease as the ice traction of the snow dissolves (the liquid water dissolves virtually instantaneously), and then the near linear (r>0.99) increase as the methanol-water mixture warms toward 0° C. The temperature

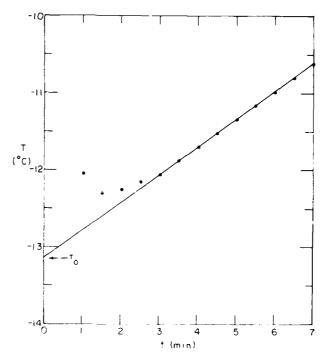


Figure 1. Alcohol calorimetry: temperature vs time plot and extrapolation to t = 0, which determines $T_u = -13.2$ °C.

 T_0 at t=0 is obtained by extrapolation from the linear part of the plot. The liquid water fraction by mass for the calorimeter used in this study is

$$L_{\rm m} = \frac{T_0 - (-16.72^{\circ}\text{C})}{8.17 - (-16.72^{\circ}\text{C})} g/g = (0.04T_0 + 0.67)g/g$$

where -16.72°C and 8.17°C are the empirically obtained values of T_0 for liquid water fractions of 0 and 1, respectively. Careful calorimeter calibration, preweighing the methanol, maintaining the methanol and calorimeter at 0°C, and keeping the methanol dry with a drying agent are the main requirements for successful measurements.

Freezing calorimetry

Freezing calorimetry has its own special requirements. The freezing agent must be insoluble in water so that no heat is generated by solvent–solute interaction. A commonly used freezing agent is a low-viscosity silicone oil. Unfortunately, the physical properties of silicones often vary between production batches, so the specific heat of a given batch of silicone oil must be determined from –50 to –20°C before it is used for calorimetry. The values given in handbooks or by manufacturers generally are not accurate enough for this application.

The heat gained by the calorimeter during a measurement must also be determined. The heat gained by the calorimeter is

$$EC_{\mathfrak{t}}(T_2 - T_{\mathfrak{t}})$$

where E = calorimeter's heat capacity, in terms of mass of the freezing agent

 $C_{\rm f}$ = freezing agent's specific heat at temperature $(T_1 + T_2)/2$

 T_1 = initial temperature of the freezing agent

 T_2 = final temperature of the snow-freezing agent mixture.

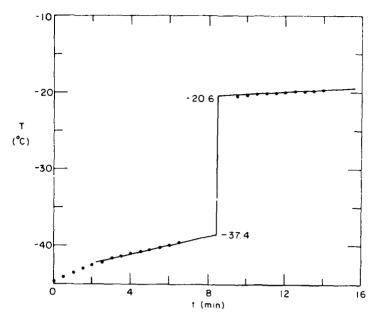


Figure 2. Freezing calorimetry: temperature vs time plot before and after snow is added. Extrapolation of $T_1 = -37.4^{\circ}\text{C}$ and $T_2 = -20.6^{\circ}\text{C}$ at 8.25 minutes is shown.

 T_1 and T_2 are determined by extrapolation from plots of temperature versus time, as shown in Figure 2.

In these experiments, $E_{\rm meth}$ was determined using methanol, whose specific heat as a function of temperature is known. Since the heat gain of the calorimeter is independent of the working fluid, $EC_{\rm f}\Delta T$ is constant and $E_{\rm meth}C_{\rm meth}=E_{\rm si}C_{\rm si}$ for any temperature change ΔT where $E_{\rm meth}$, $E_{\rm si}$, $C_{\rm meth}$, $C_{\rm si}$ are the heat capacities of the calorimeter, in terms of mass of the working fluid, and specific heats for methanol and silicone oil working fluids respectively. From $E_{\rm meth}$, $E_{\rm si}$ can be calculated and the temperature dependence of $C_{\rm si}$ determined.

The snow sample must be added to the freezing calorimeter in small pieces so that no large frozen chunks result. Large chunks tend to freeze at their surfaces, leaving unfrozen water inside. This, in turn, leads to a systematically low determination of their liquid water content.

Dilution

Dilution measurements require that the insulated container and stock solution be at 0°C to prevent melting or freezing of the snow sample. This is accomplished by placing an ice—water mixture in a plastic bag in the container and by storing the stock solution in an ice—water bath. Measurements of specific conductance must be made with all sample fluids at the same temperature. We used approximately 1 L of snow and enough stock solution to obtain a unity mass ratio of sample to stock solution.

Capacitance meter

The capacitance snow moisture meter has a sensing plate with dimensions of $0.15 \times 15 \times 15$ cm and senses a snow volume of about $4 \times 15 \times 15$ cm, or 900 cm³. The meter measures the electrical capacitances of the air and snow, then other equipment is used to measure the sensed snow's density. The snow's volumetric liquid water content L_v is calculated from these three data. Dividing by the snow's density ρ_s gives liquid water content by mass. Since 90% of the meter's information comes from within ± 2 cm of the plate, it is important that full contact between the snow and plate be obtained.

RESULTS AND ANALYSIS

Table 1 shows the results of the comparisons between alcohol calorimetry and freezing calorimetry, dilution and the capacitance meter. To test the equivalence of the methods, we conducted tests of significance in which the hypotheses are:

$$\mu_F = \mu_A$$

$$\mu_D = \mu_A$$

$$\mu_C = \mu_A$$

where μ_F , μ_D , μ_C and μ_A are the mean values of measurements made by freezing calorimetry, dilution, capacitance meter and alcohol calorimetry respectively (Hoel 1976).

The analysis of the paired comparisons is given in Table 2. The value $F = V_c / V_e$, where V_c is the mean square of the column means and V_c is the mean square of the variation in all measurements (due to measurement errors and spatial variations in liquid water content of the snow). If $F > F_c$, the critical value chosen for the test, then that value of F has a low probability of occurrence, and the hypothesis that $\mu_s = \mu_A$ is rejected.

From the tests of significance we see that $F < F_c$ in all of the comparisons, and it is probable that no bias exists in any of the measurements. We accept the hypotheses that the means of the groups of paired measurements are the same and the measurement methods are equivalent.

The random errors associated with each of the techniques have been discussed in the articles originally describing the methods. By fitting a regression line to the paired values in a given comparison, we can calculate the standard error of estimate $s_{\rm e}$. We are 95% confident that all test values will fall within $\pm 1.96 \, s_{\rm e}$ of the regression line. The 95% confidence intervals for the comparisons are given in Table 3.

The absolute errors of the methods have been estimated to be ± 1 to 2 g water/100 g snow for freezing calorimetry, ± 1 g water/100 g snow for the dilution method, and ± 1 g water/100 g snow for the alcohol method. The capacitance meter used in this study was calibrated by comparison with a freezing calorimeter with reported accuracy of 0.5 g water/100 cm³ snow. The meter's accuracy is limited to that of the calibration method. The error in the meter's electronics produces an additional liquid water error of 0.2 to 0.4 g water/100 cm³ snow, depending on snow wetness and density.

The error in measuring snow density ρ with a 200-cm³ cutter type sampler was estimated by measuring the density of dry snow at -3° C with the cutter and with the capacitance meter. The standard error s_c of these measurements was $2 g/100 \text{ cm}^3$ snow. This uncertainty could be attributable to the sampling error of the cutter, electronic error in the meter, or variations in snow density between the 200-cm^3 volume sampled by the cutter and the 900-cm^3 volume sensed by the meter. Of all density measurements, 95% will be in error by less than $1.96 s_c$ or 4 g/100 g snow. This maximum density error will contribute $0.2 \text{ to } 0.5 \text{ g water}/100 \text{ cm}^3$ snow error to the capacitance moisture measurement. Thus, the sum of all maximum errors for the dielectric meter is $1.0 \text{ to } 1.4 \text{ g water}/100 \text{ cm}^3$ snow, with 95% confidence.

The measurement uncertainty for the alcohol calorimeter determination of mass liquid water content is 1 g water/100 g snow, resulting from temperature and weighing errors. Since the 95% confidence interval for snow density measurements is $4 \text{ g}/100 \text{ cm}^3$, the 95% confidence interval for volume liquid water by alcohol calorimetry is

$$\Delta L_{v} \cong L_{m} \cdot \Delta \rho + \Delta L_{m} \cdot \rho$$

$$= \frac{20 \text{ g water}}{100 \text{ g snow}} \cdot \frac{4 \text{ g snow}}{100 \text{ cm}^{3} \text{ snow}} + \frac{1 \text{ g water}}{100 \text{ g snow}} \cdot \frac{4 \text{ g snow}}{100 \text{ cm}^{3} \text{ snow}}$$

$$= 1.2 \text{ g water}/100 \text{ cm}^{3} \text{ snow, for } \rho = 4 \text{ g}/100 \text{ cm}^{3}, \text{ and } L_{m} = \frac{20 \text{ g}}{100 \text{ g}}$$

Table 1. Comparison of laboratory measurements (liquid water percent by mass L_m and by volume L_v) from alcohol calorimetry and other methods (definitions at end of Table 2).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Freezing	Alcohol				Alcohol			Capacitance Akoltol	Akolad	
L_m κ_i L_m κ_i L_m κ_i L_p <t< th=""><th></th><th>calorimeter</th><th>calorimeter</th><th></th><th></th><th>Dilution</th><th>calorimete</th><th></th><th></th><th>meter</th><th>calorimeter</th><th></th></t<>		calorimeter	calorimeter			Dilution	calorimete			meter	calorimeter	
95 96 96 96 14 May 1986 44 56 50 5 November 85 119 26 114 116 115 106 80 80 80 80 110 06 115 106 82 83 83 83 83 83 83 83 83 83 83 83 83 83		L,	۲,,,	×°			r"				٦ [°]	×
11.4 11.6 11.5 9.6 9.1 9.5 1.0 0.6 9.9 11.2 10.6 8.0 8.0 8.0 8.0 5.7 2.8 8.2 9.2 8.7 15 May 1986 4.3 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 8.3 10.0 9.2 3.4 2.7 3.0 3.3 2.1 3.3 2.1 8.4 5.7 6.9 6.3 6.5 4.7 4.9 7.2 8.5 7.8 9.7 4.9 4.9 7.3 8.3 7.8 8.0 6.4 4.9 4.9 7.3 8.3 7.8 8.0 6.4 5.9 6.3 4.9 7.3 8.3 7.8 8.0 6.4 5.9 6.3 4.9 4.9 10.1 9.7 9.9 6.4 5.4 5.9 2.1 1.9 10.8 8.7 10.2 1.2 8.0 6.4 4.3 5.5 10.9 8.8 8.8 8.0 8.0 8.0 8.0 8.0	20 May 1986	9.5	9.6	9.6	14 May 1986	4.4	5.6	5.0	5 November 85	6.1	2.6	2.2
9.9 11.2 10.6 8.0 8.0 8.0 8.0 5.7 2.8 11.7 12.9 12.3 8.8 8.9 8.8 8.9 8.8 3.1 3.2 18.2 18.2 18.2 19.2 12.3 8.8 8.9 8.8 8.9 8.8 3.1 3.2 18.2 18.2 19.0 9.2 9.7 9.6 9.9 19.7 9.6 9.0 19.2 19.0 19.2 19.0 19.2 19.0 19.2 19.0 19.2 19.0 19.2 19.0 19.2 19.0 19.2 19.2 19.0 19.2 19.2 19.0 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2	•	11.4	11.6	11.5		9.6	ن ن	9.5		0.1	0.6	0.8
11.7 12.9 12.3 8.8 8.9 8.8 8.2 9.2 8.7 15 May 1986 4.3 5.8 5.0 21 January 86 0.3 0.6 7.8 9.6 9.7 7.9 6.9 7.9 6.9 6.9 7.1 7.4 7.2 3.4 3.4 3.4 7.0 8.5 7.8 9.6 9.8 9.7 4.6 4.7 7.2 8.5 7.8 8.0 6.4 6.4 6.4 6.4 5.4 5.4 5.9 6.4 7.3 8.3 7.8 8.0 6.4 5.4 5.9 6.3 6.5 10.1 9.7 9.9 6.4 5.4 5.9 6.3 4.9 10.1 9.7 9.9 6.4 5.4 5.9 6.2 1.9 10.2 10.2 4.7 8.0 6.4 5.9 6.3 6.5 10.8 8.7 9.8 6.5 7.1 6.8 6.8 6.8 11.0 10.7 10.8 9.2 9.2 9.8 4.3 2.4 11.1 11.9 11.5 x 7.2 7.2 9.8 9.8 4.7 <td></td> <td>6.6</td> <td>11.2</td> <td>10.6</td> <td></td> <td>8.0</td> <td>8.0</td> <td>8.0</td> <td></td> <td>5.7</td> <td>2.8</td> <td>3.2</td>		6.6	11.2	10.6		8.0	8.0	8.0		5.7	2.8	3.2
8.2 9.2 8.7 15 May 1986 4.3 5.8 5.0 21] January 86 0.3 0.6 5.8 9.6 9.7 5.9 7.9 6.9 7.9 6.0 0.2 0.2 8.3 10.6 9.2 3.4 2.7 3.0 3.3 2.1 3.3 2.1 3.3 2.1 3.3 3.4 4.7 3.4 3.4 4.7 3.4		11.7	12.9	12.3		8.8	8.9	8.8		3.1	3.2	3.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 May 1986	8.2	9.2	8.7	15 May 1986	4:3	5.8	5.0	21 January 86	0.3	0.6	0.4
8.3 10.0 9.2 3.4 2.7 3.0 3.3 2.1 8.9 10.5 9.7 9.6 9.8 9.7 3.4 2.1 7.6 7.1 7.4 6.7 6.3 6.5 6.5 3.4 4.7 7.2 8.5 7.8 8.0 6.9 6.3 6.9	•	8.7	9.6	4.7	•	5.9	6.7	6.9	•	6	0.2	0.0
8.9 10.5 9.7 9.6 9.8 9.7 3.4 3.4 7.6 7.1 7.4 6.7 6.3 6.5 4.6 4.7 4.7 7.2 8.5 7.8 8.0 6.4 </td <td></td> <td>8.3</td> <td>10.0</td> <td>9.5</td> <td></td> <td>3.4</td> <td>2.7</td> <td>3.0</td> <td></td> <td>3.3</td> <td>- ci</td> <td>2.7</td>		8.3	10.0	9.5		3.4	2.7	3.0		3.3	- ci	2.7
7.6 7.1 7.4 6.7 6.3 6.5 4.5 4.7 4.7 7.2 8.5 7.8 5.7 6.9 6.3 6.3 3.8 4.9 7.3 8.3 7.8 8.0 5.6 6.8 3.5 2.6 7.3 8.3 7.8 8.0 6.4 5.4 5.9 2.2 2.8 2.8 2.8 1.9 0.4 10.1 9.7 9.8 10.2 7.1 6.8 6.9 6.4 6.4 6.4 6.9 6.8 0.9 <t< td=""><td></td><td>6.8</td><td>10.5</td><td>6.7</td><td></td><td>9.6</td><td>8.6</td><td>6.7</td><td></td><td>3.4</td><td>3.4</td><td>3.4</td></t<>		6.8	10.5	6.7		9.6	8.6	6.7		3.4	3.4	3.4
7.2 8.5 7.8 5.7 6.9 6.3 3.8 4.9 7.3 8.3 7.8 8.0 5.6 6.8 3.5 2.6 10.1 9.7 9.9 6.4 5.4 5.9 2.2 January 86 2.8 2.6 10.8 9.5 10.2 4.7 8.0 6.4 0.9 0.4 10.9 8.7 9.8 10.2 7.8 9.0 2.1 1.9 11.0 10.7 10.8 9.2 8.0 8.6 4.3 2.8 11.2 13.8 13.0 6.9 6.8 6.8 6.8 4.1 2.8 9.7 9.6 9.6 6.8 6.8 6.8 6.8 6.9 6.8 6.8 6.9 6.8 6.9	22 May 1986	7.6	7.1	7.4		6.7	6.3	6.5		4.6	4.7	4.6
7.3 8.3 7.8 8.0 5.6 6.8 3.5 2.6 10.1 9.7 9.9 6.4 5.4 5.9 22 January 86 2.8 0.2 10.8 9.5 10.2 4.7 8.0 6.4 5.4 5.9 0.2 January 86 2.8 0.2 10.9 8.7 9.8 16 May 1986 6.5 7.1 6.8 0.6 2.1 1.9 11.0 10.7 10.8 9.2 8.0 8.6 4.3 2.8 12.2 13.8 13.0 6.9 6.8 6.8 4.1 2.8 9.7 9.6 9.6 6.8 6.8 6.8 4.1 2.8 11.1 11.9 11.5 x̄ 7.2 7.2 9.8 2.4 3.4 11.7 11.3 11.5 x̄ 7.2 7.2 7.2 3.3 3.4 9.8 10.1 x = 7.2 7.2 7.2 7.8 9.8 1.7 3.3 3.4 9.8 10.1 x = 7.2 7.2 7.2 7.2 2.6 January 86 3.3 3.4 9.8 10.1 x = 7.2 2.4 2.4 3.7 3.7		7.2	8.5	7.8		2.7	6.9	6.3		3.8	4.9	7
10.1 9.7 9.9 6.4 5.4 5.9 22 January 86 2.8 0.2 10.8 9.5 10.2 4.7 8.0 6.4 6.4 6.4 6.9 0.4 10.9 8.7 9.8 16 May 1986 6.5 7.1 6.8 0.6 2.1 0.9 0.4 8.6 8.8 8.7 10.2 7.8 9.0 2.1 1.9 11.0 10.7 10.8 9.2 8.0 8.6 4.3 2.8 9.7 9.6 9.6 6.8 6.8 6.8 4.1 2.8 11.1 11.9 11.5 x̄ 7.2 7.2 9.8 2.4 3.4 11.7 11.3 11.5 x̄ 7.2 7.2 7.2 3.3 3.4 9.8 10.1 x = 7.2 x = 7.2 x̄ 4.7 3.7 9.8 10.1 x = 7.2 x̄ 2.6 3.3 3.4 9.8 10.1 x = 7.2 x̄ 2.6 3.3 3.4 8 10.1 x = 7.2 x̄ 2.6 3.3 3.4 8 10.1 x = 7.2 x̄ 2.6 3.3 <		7.3	8.3	7.8		8.0	9.9	8.9		3.5	2.6	3.0
10.8 9.5 10.2 4.7 8.0 6.4 0.9 0.4 10.9 8.7 9.8 16 May 1986 6.5 7.1 6.8 0.6 2.1 8.6 8.8 8.7 10.2 7.8 9.0 2.1 1.9 11.0 10.7 10.8 9.2 8.0 8.6 4.3 2.8 12.2 13.8 13.0 6.9 6.8 6.8 4.1 2.8 9.7 9.6 9.6 10.5 9.2 9.8 2.4 3.4 11.1 11.9 11.5 x 7.2 7.2 7.2 3.3 3.4 11.7 11.3 11.5 x = 7.2 3.7 3.7 9.8 10.1 x = 7.2 3.7 3.7 9.8 10.1 x = 7.2 3.7 8 10.1 x = 7.2 3.7 8 10.1 x = 7.2 3.4 8 10.1 x = 7.2 3.4 8 10.1 x = 7.2 3.4 8 10.1 x = 2.6 9 x = 2.6 10 x <td></td> <td>10.1</td> <td>6.7</td> <td>6.6</td> <td></td> <td>1.9</td> <td>5.4</td> <td>5.9</td> <td>22 January 86</td> <td>2.8</td> <td>0.2</td> <td><u>.</u>5</td>		10.1	6.7	6.6		1 .9	5.4	5.9	22 January 86	2.8	0.2	<u>.</u> 5
10.9 8.7 9.8 16 May 1986 6.5 7.1 6.8 0.6 2.1 8.6 8.8 8.7 10.2 7.8 9.0 2.1 1.9 11.0 10.7 10.8 9.2 8.0 8.6 4.3 2.8 12.2 13.8 13.0 6.9 6.8 6.8 4.1 2.8 9.7 9.6 9.6 6.8 6.8 2.4 3.4 11.1 11.9 11.5 x ₁ 7.2 7.2 9.8 11.7 11.3 11.5 x ₁ 7.2 7.2 3.4 9.8 10.1 x = 7.2 x ₁ 3.4 9.8 10.1 x = 7.2 x ₁ 2.8 2.5 x ₁ x ₁ x ₂ x ₁ 2.8 2.5 x ₁ x ₂ x ₁ x ₂ x ₁ 2.8 2.5		10.8	9.5	10.2		4.7	8.0	6.4		6.0	† :0	9.0
8.6 8.8 8.7 10.2 7.8 9.0 2.1 1.9 11.0 10.7 10.8 9.2 8.0 8.6 8.8 4.3 2.8 13.0 6.9 6.8 6.8 6.8 4.1 2.8 11.1 11.9 11.5 x_1 7.2 7.2 9.8 3.3 3.4 11.7 11.3 11.5 $x = 7.2$ $x = 7.2$ x_1 $x = 2.6$ x_2 x_3 x_4 x_4 x_5	28 May 1986	10.9	8.7	8.6	16 May 1986	6.5	7.1	8.9		0.6	2.1	- :
11.0 10.7 10.8 9.2 8.0 8.6 4.3 2.8 12.2 13.8 13.0 6.9 6.8 6.8 6.8 4.1 2.8 9.7 9.6 9.6 10.5 9.2 9.8 2.4 3.4 3.4 11.1 11.9 11.5 x_1 7.2 7.2 7.2 26 January 86 3.3 3.4 11.7 11.3 11.5 $x = 7.2$		8.6	8.8	8.7		10.2	7.8	0.6		2.1	6.1	5.0
12.2 13.8 13.0 6.9 6.8 6.8 4.1 2.8 9.7 9.6 9.6 9.6 10.5 9.2 9.8 2.4 3.4 3.4 11.1 11.9 11.5 x_1 7.2 7.2 7.2 26 January 86 3.3 3.4 11.7 11.3 11.5 $x = 7.2$ $x = 7.2$ x_1 $x = 7.2$ x_2 x_3 x_4 x_4 x_5 $x_$		11.0	10.7	10.8		9.2	8.0	9.8		4.3	13.8 13.8	3.6
9.7 9.6 9.6 10.5 9.2 9.8 2.4 3.4 3.4 11.1 11.9 11.5 x_1 7.2 7.2 7.2 26 January 86 3.3 3.4 11.7 11.3 11.5 $x = 7.2$ $x = 7.2$ $x_1 = 2.5$ $x_1 = 2.5$ $x_1 = 2.5$		12.2	13.8	13.0		6.9	8.9	8.9		4.1	2.8	3.4
11.1 11.9 11.5 x_1 7.2 7.2 26 January 86 3.3 3.4 11.7 11.3 11.5 $x = 7.2$ $x = 7.2$ $x = 7.2$ 26 January 86 3.3 3.4 3.4 3.7 $x = 7.2$		6.7	9.6	9.6		5.01	9.2	8.6		2.4	3.4	2.9
11.7 11.3 11.5 $\frac{1}{x} = 7.2$ 26 January 86 3.3 3.4 4.7 9.8 10.1 $\frac{1}{x} = 7.2$ $\frac{1}{x} = \frac{1}{x} = $		11.1	6.11	11.5	. x	7.2	7.2			3.3	3.4	3.4
9.8 10.1 $x = 7.2$ 4.7 3.7 x_1 2.8 2.5 x_2 x_3 x_4 2.5 $x = 2.6$		11.7	11.3	11.5					26 January 86	3.3	3.4	3.4
x = 2.8	×	8.6	10.1		x = 7.2					4.7	3.7	7
	-								×	2.8	2.5	
x = 2.6	x = 10.0								-			
									$x = \frac{2.6}{2.6}$			

Table 2. Analysis of variance for comparisons of the methods.

variation	Sum of squares	Degrees of freedom	Mean square	F
	a. Freezing	g calorimeter vs alcoh	ol calorimeter.	
		Hypothesis: $\mu_F = \mu$	^l A	
Column means Snow liquid water content, error	$S_c = 0.6$ $S_e = 10.8$	c-1 = 1 (c-1)(r-1) = 19	$V_c = S_c / (c-1) = 0.0$ $V_e = S_c / [(c-1)(r-1)] = 0.6$	$V_{\rm c}/V_{\rm e} = 1.9$
F_c for 1 and 19 degrees Since $F \le F_c$, hypothes		38 (95% confidence).		
	b. D	ilution vs alcohol cal Hypothesis = μ_D =		
Column means	$S_c = 0.2$	<i>c</i> −1 = 1	$V_c = S_c / c - 1 = 0.2$	$V_{c}/V_{u}=0.3$
Snow liquid water content, error	$S_{e}^{c} = 17.9$	(c-1)(r-1) = 17	$V_c = S_c / c - 1 = 0.2$ $V_e = S_e / [(c-1)(r-1)] = 1.1$	
$F_{\rm c}$ (1,17) = 4.45 (95% c				
Since $F \leq F_c$, hypothe	esis is accepted.			
	c. Capaci	tance meter vs alcoho Hypothesis = μ_C =		
Column means	$S_{c} = 1.0$	<i>c</i> −1 = 1	$V_c = S_c / c - 1 = 1.0$	$V_{c}/V_{e} = 1.3$
Snow liquid water content, error	·	(c-1)(r-1) = 20	$V_{\rm e} = S_{\rm e} / [(c-1)(r-1)] = 0.6$	
$F_c(1,20) = 4.35 (95\% \text{ co}$				
	sis is accepted.			
Since $F < F_c$, hypothes				
Definitions:	ılation means of d	lata for alcohol calorim	eter, capacitance meter, dilutic	on method and
Definitions: $\mu_{A'} \mu_{C'} \mu_{D'} \mu_{F} = \text{popu}$	ılation means of d		neter, capacitance meter, dilutio	on method and
Definitions: $\mu_{A'} \mu_{C'} \mu_{D'} \mu_{F} = \text{popt}$ freez		respectively	neter, capacitance meter, dilutio	on method and
Definitions: $\mu_{A'}, \mu_{C'}, \mu_{D'}, \mu_{F} = \text{popu}$ freez c = column	ring calorimeter,	respectively	neter, capacitance meter, dilutic	on method and
Definitions: $\mu_{A'}, \mu_{C'}, \mu_{D'}, \mu_{F} = \text{popu}$ freez c = colum r = rows	ting calorimeter, i mns of sample da	respectively Ita	neter, capacitance meter, dilutic	on method and
Definitions: $\mu_{A'} \mu_{C'} \mu_{D'} \mu_{F} = \text{popt}$ freez c = column $r = rowsx_{ij} = \text{samp}$	ting calorimeter, i mns of sample da s of sample data	respectively ata of column <i>j</i>	neter, capacitance meter, dilutic	on method and
Definitions: $\mu_{A'} \mu_{C'} \mu_{D'} \mu_{F} = \text{popt}$ freez c = colum r = rows $x_{ij} = \text{samp}$ $\overline{x}_{i} = \text{mean}$ $\overline{x}_{i} = \text{mean}$	ting calorimeter, i mns of sample da s of sample data ple value at row i n of row i of sam n of column j of s	respectively ita of column <i>j</i> ple data ample data	neter, capacitance meter, dilutic	on method and
Definitions: $\mu_{A'} \mu_{C'} \mu_{D'} \mu_{F} = \text{popt}$ freez c = colum r = rows $x_{ij} = \text{samp}$ $\overline{x}_{i} = \text{mean}$ $\overline{x}_{i} = \text{mean}$	ting calorimeter, i mns of sample da s of sample data ple value at row <i>i</i> n of row <i>i</i> of sam	respectively ita of column <i>j</i> ple data ample data	neter, capacitance meter, dilutic	on method and
Definitions: $\mu_{A'} \mu_{C'} \mu_{D'} \mu_{F} = \text{popt}$ freez c = colum r = rows $x_{ij} = \text{samp}$ $\overline{x}_{i} = \text{mean}$ $\overline{x}_{i} = \text{mean}$	ting calorimeter, i mns of sample data s of sample data ple value at row i n of row i of sam n of column j of s n of all sample da	respectively ita of column <i>j</i> ple data ample data	neter, capacitance meter, dilutic	on method and
Definitions: $\mu_{A'}, \mu_{C'}, \mu_{D'}, \mu_{F} = \text{popu}$ freez $c = \text{colum}$ $r = \text{rows}$ $x_{ij} = \text{samp}$ $\overline{x}_{i} = \text{mean}$ $\overline{x}_{i} = \text{mean}$ $\overline{x} = \text{mean}$ $S_{c} = r \sum_{j=1}^{c} (\bar{x}_{j})$	ting calorimeter, i mns of sample data s of sample data ple value at row i n of row i of sam n of column j of s n of all sample da	respectively ita of column <i>j</i> ple data ample data	neter, capacitance meter, dilutic	on method and
Definitions: $\mu_{A'} \mu_{C'} \mu_{D'} \mu_{F} = \text{population}$ freez $c = \text{column}$ $r = \text{rows}$ $x_{ij} = \text{samp}$ $\overline{x}_{i} = \text{mean}$ $\overline{x}_{i} = \text{mean}$ $\overline{x}_{i} = \text{mean}$ $S_{c} = r \sum_{j=1}^{c} (\overline{x}_{j})$ $S_{e} = r \sum_{j=1}^{c} \sum_{j=1}^{c} (\overline{x}_{j})$	ting calorimeter, it may be a sample data so of sample data ple value at row it of sample of column j of sample data of all sample data $\bar{x}_j - \bar{x}_j^2$	respectively ita of column <i>j</i> ple data ample data	neter, capacitance meter, dilutic	on method and
Definitions: $\mu_{A'} \mu_{C'} \mu_{D'} \mu_{F} = \text{popt} \\ \text{freez} \\ c = \text{colum} \\ r = \text{rows} \\ x_{ij} = \text{samp} \\ \overline{x}_{i} = \text{mean} \\ \overline{x}_{i} = \text{mean} \\ \overline{x}_{i} = \text{mean} \\ S_{c} = r \sum_{j=1}^{c} (\overline{x}_{j+1}) \\ S_{e} = r \sum_{j=1}^{r} \sum_{j=1}^{c} C_{j+1} \\ F_{c} = \text{critical} $	ting calorimeter, it muss of sample data sof sample data ple value at row it of sample nof column j of son of all sample data $ \vec{x}_j - \vec{x}_j ^2$	respectively ita of column <i>j</i> ple data ample data ita	neter, capacitance meter, dilutic	on method and
Definitions: $\mu_{A'} \mu_{C'} \mu_{D'} \mu_{F} = \text{popu}$ freez $c = \text{colum}$ $r = \text{rows}$ $x_{ij} = \text{samp}$ $\overline{x}_{i} = \text{mean}$ $\overline{x}_{i} = \text{mean}$ $\overline{x} = \text{mean}$ $S_{c} = r \sum_{j=1}^{c} (\bar{x}_{j})$ $S_{e} = r \sum_{j=1}^{c} (\bar{x}_{j})$ $F_{c} = \text{critic}$ $V_{c} = \text{mean}$	ting calorimeter, it may be a soft sample data soft sample data ple value at row it on of row i of sample of column j of some of all sample data $(x_{ij}-\overline{x}_i-\overline{x}_j+\overline{x}_i)^2$ and value of F in square of column is quare of the value	respectively ita of column <i>j</i> ple data ample data ita		on method an

Table 3. The 95% confidence intervals for the comparisons.

95% confidence level = $1.96 s_e$ y_e = regression line value for x

$$s_0 = \sqrt{\frac{\sum_{i=1}^{n} (y_i - y_i')^2}{n-2}}$$

Freezing vs alcohol calorimetry
Dilution vs alcohol calorimetry
Capacitance meter vs alcohol calorimetry

#2.1 g water/100 g snow #3.0 g water/100 g snow #2.3 cm³ water/100 cm³ snow

DISCUSSION

Which method one adopts will depend on the nature of the experiment. Both the alcohol and freezing calorimeter methods are limited to 100- to 150-g snow samples because of limits on the practical size of a field calorimeter. The dilution method can accommodate 1 to 2 L of snow without much difficulty, which makes it useful for analyzing horizontal and vertical core samples. Another advantage is that several samples can be analyzed in rapid succession by simply using more operators and insulated containers. The most useful de-

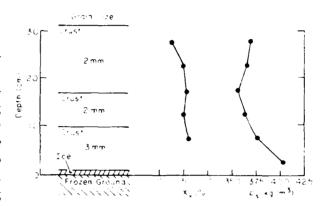


Figure 3. Snow cover profile showing stratigraphy, grain size, liquid water content and density as functions of depth. Snow grains are rounded, equilibrium growth type. Temperature of snow is uniform at 0°C.

vice, however, is the capacitance meter, with which measurements can be made relatively quickly and conveniently. Large areas and liquid water depth profiles can be measured easily. The system is very compact and, other than density measurement equipment, requires no additional apparatus. Its major drawback at present is its limited availability. The liquid water content from any of the methods can be easily calculated with a programmable handheld calculator.

We attempted several comparisons of each method using the natural snow cover. The maximum snow depth was 0.5 m. A typical pit profile is shown in Figure 3. The stratigraphy and spatial inhomogeneity of the snow precluded any meaningful comparison. Applying the same statistical tests as for the laboratory data consistently showed a bias in the comparisons. We attribute the bias to spatial variations in the liquid water content of the natural snow cover. This problem has been discussed previously (Denoth et al. 1984, Boyne 1985) and points out the need for environmental control of the snow when comparisons are made. Furthermore, it shows that a point measurement of liquid water content in the natural snow cover is not a reliable estimate of its spatial distribution. Variations of 10 to 15 g water/100 cm³ volume liquid water content are typical during active melting and have been studied in detail by Marsh and Woo (1984).

CONCLUSIONS

We have compared one relative and three absolute techniques for measuring the liquid water fraction of snow. We have found all of the techniques to give equivalent results. The

95% confidence interval for each comparison is compatible with the estimated errors for each method. All methods should be capable of giving accuracy of, at worst, ± 2 g water/100 g snow or ± 1.6 g water/100 cm³ snow for a liquid water content measurement.

LITERATURE CITED

Ambach, W. and A. Denoth (1980) The dielectric behavior of snow: A study versus liquid water content. In *Proceedings of NASA Workshop on Microwave Remote Sensing of Snowpack Properties* (A. Rango, Ed.). NASA Conference Publication 2153, p. 59–62

Boyne, H. (1985) Microwave determination of snowpack liquid water content. Final Report, U.S. Army Research Office, Contract DAAG 29-83-K-0161.

Davis, R.E., J. Dozier, E.R. LaChapelle and R. Perla (1985) Field and laboratory measurements of snow liquid water by dilution. *Water Resources Research*, **21**(9): 1415–1420.

Denoth, A., A. Folgar, P. Weiland, C. Mätzler, H. Aebischer, M. Tiuri and A. Sihvola (1984) A comparative study of instruments for measuring the liquid water content of snow. *Journal of Applied Physics*, **56**: 2154–2160.

Fisk, D. (1986) Method of measuring liquid water mass fraction of snow by alcohol solution. *Journal of Glaciology*, **32**(112): 538–539.

Hoel, P. G. (1976) Elementary Statistics. New York: J. Wiley and Sons.

Jones, E.B., A. Rango and S.M. Howell (1983) Snowpack liquid water determinations using freezing calorimetry. *Nordic Hydrology*, **14**: 113–126.

Marsh, P. and M. Woo (1984) Wetting front advance and freezing of meltwater within a snow cover. 1. Observations in the Canadian Arctic. Water Resources Research, 20: 1853–1864.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the data needed, and completing and wing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestion for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE February 1990 3. REPORT TYPE AND DATES COVERED				
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS	
A Laboratory Comparison o Liquid Water Fraction of Sno	f Field Techniques for Measur ow	rement of the	PE: 6.27.30A PR: 4A762730AT42	
6. AUTHORS	TA: FS			
Harold S. Boyne and David	J. Fisk		WU: 012	
7. PERFORMING ORGANIZATION NAMI	E(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION	
U.S. Army Cold Regions Res 72 Lyme Road Hanover, New Hampshire 0	Special Report 90-3			
9. SPONSORING/MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING	
Office of the Chief of Engine Washington, D.C. 20314-100			AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION/AVAILABILITY STA	EMENT		12b. DISTRIBUTION CODE	
Approved for public release	; distribution is unlimited.			
Available from NTIS, Spring	gfield, Virginia.			
13. ABSTRACT (Maximum 200 words)				
meltwater generation and m passive remote sensing syste spectrum. New methods of a describes tests of measurementer, alcohol calorimetry a of the absolute methods. All mass liquid water content that the experimental errors analysis of each method. Ho	reltwater transmission. It also ems operating in the microwar measuring liquid water have beent equivalence, in which are nd dilution. Also compared a comparisons were made in a nat varied from 0 to 14%. The cassociated with the measuren	has a profound effective and millimeter was been reported that she compared the three at a calibrated capacilaboratory coldroom comparisons show the nents are consistent were ment of equivalence.	ssessing its mechanical strength, on the performance of active and we regions of the electromagnetic ow considerable promise. This report bsolute methods of freezing caloritance snow moisture meter and one using homogeneous snow with a at the methods are equivalent and with what is expected from an error edepends strongly on a variety of cill.	
	orimetry tests, Dielectric snow			
	ests, Laboratory tests, Liquid v v cover, Snow liquid water fra			
Snowmelt, Wet snow	<u> </u>			
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	ATION 20. LIMITATION OF ABSTRACT	
Unclassified	Unclassified	Unclassifie	d UL	